Specifica Inc. 1512 Pacheco Street, Suite A203,

Santa Fe, NM 87505

505 471 0065


© 2019 by Specifica Inc. 


Specifica Publications

Ferrara, F. et al. Rapid purification of billions of circulating CD19+ B cells directly from leukophoresis samples. N Biotechnol 46, 14-21, doi:10.1016/j.nbt.2018.05.006 (2018).

D’Angelo, S. et al. Many Routes to an Antibody Heavy-Chain CDR3: Necessary, Yet Insufficient, for Specific Binding. Frontiers in immunology 9, doi:10.3389/fimmu.2018.00395 (2018).

D'Angelo, S. et al. Selection of phage-displayed accessible recombinant targeted antibodies (SPARTA): methodology and applications. JCI Insight 3, doi:10.1172/jci.insight.98305 (2018).

Bradbury, A. R. M. et al. When monoclonal antibodies are not monospecific: hybridomas frequently express additional functional variable regions. MAbs, 1-19, doi:10.1080/19420862.2018.1445456 (2018).

Selected Publications by Specifica Scientists and Collaborators

Quaglia, S. et al. A Functional Idiotype/Anti-Idiotype Network Is Active in Genetically Gluten-Intolerant Individuals Negative for Both Celiac Disease-Related Intestinal Damage and Serum Autoantibodies. Journal of Immunology, doi:10.4049/jimmunol.1800819 (2019).

Phipps, M. L. et al. Beyond Helper Phage: Using "Helper Cells" to Select Peptide Affinity Ligands. PLoS One 11, e0160940, doi:10.1371/journal.pone.0160940 (2016).

Jones, T. D. et al. The INNs and outs of antibody nonproprietary names. MAbs 8, 1-9, doi:10.1080/19420862.2015.1114320 (2016).

Erasmus, M. F. et al. Dynamic pre-BCR homodimers fine-tune autonomous survival signals in B cell precursor acute lymphoblastic leukemia. Science signaling 9, ra116, doi:10.1126/scisignal.aaf3949 (2016).

Glanville, J. et al. Deep sequencing in library selection projects: what insight does it bring? Curr Opin Struct Biol 33, 146-160, doi:10.1016/j.sbi.2015.09.001 (2015).

Ferrara, F., Kim, C. Y., Naranjo, L. A. & Bradbury, A. R. Large scale production of phage antibody libraries using a bioreactor. MAbs 7, 26-31, doi:10.4161/19420862.2015.989034 (2015).

Bradbury, A. R. & Pluckthun, A. Getting to reproducible antibodies: the rationale for sequenced recombinant characterized reagents. Protein Eng Des Sel 28, 303-305, doi:10.1093/protein/gzv051 (2015).

Bradbury, A. & Pluckthun, A. Reproducibility: Standardize antibodies used in research. Nature 518, 27-29, doi:10.1038/518027a (2015).

D'Angelo, S. et al. From deep sequencing to actual clones. Protein Eng Des Sel 27, 301-307, doi:10.1093/protein/gzu032 (2014).

D'Angelo, S. et al. The antibody mining toolbox: an open source tool for the rapid analysis of antibody repertoires. MAbs 6, 160-172, doi:10.4161/mabs.27105 (2014).

Close, D. W. et al. Using phage display selected antibodies to dissect microbiomes for complete de novo genome sequencing of low abundance microbes. BMC Microbiol 13, 270, doi:10.1186/1471-2180-13-270 (2013).

D'Angelo, S. et al. Profiling celiac disease antibody repertoire. Clin Immunol 148, 99-109, doi:10.1016/j.clim.2013.04.009 (2013).

Ferrara, F., Naranjo, L. A., D'Angelo, S., Kiss, C. & Bradbury, A. R. Specific binder for Lightning-Link(R) biotinylated proteins from an antibody phage library. Journal of immunological methods 395, 83-87, doi:10.1016/j.jim.2013.06.010 (2013).

Ferrara, F. et al. Using phage and yeast display to select hundreds of monoclonal antibodies: application to antigen 85, a tuberculosis biomarker. PLoS One 7, e49535, doi:10.1371/journal.pone.0049535 (2012).

Ferrara, F., Listwan, P., Waldo, G. S. & Bradbury, A. R. Fluorescent labeling of antibody fragments using split GFP. PLoS One 6, e25727, doi:10.1371/journal.pone.0025727 (2011).

D'Angelo, S. et al. Filtering "genic" open reading frames from genomic DNA samples for advanced annotation. BMC genomics 12 Suppl 1, S5, doi:10.1186/1471-2164-12-S1-S5 (2011).

Bradbury, A. R. M., Sidhu, S., Dübel, S. & McCafferty, J. Beyond natural antibodies: the power of in vitro display technologies. Nature Biotechnology 29, 245-254, doi:10.1038/nbt.1791 (2011).

Velappan, N. et al. A comprehensive analysis of filamentous phage display vectors for cytoplasmic proteins: an analysis with different fluorescent proteins. Nucleic acids research 38, e22, doi:10.1093/nar/gkp809 (2010).

Di Niro, R. et al. Rapid interactome profiling by massive sequencing. Nucleic acids research 38, doi:10.1093/nar/gkq052 (2010).

Velappan, N., Sblattero, D., Chasteen, L., Pavlik, P. & Bradbury, A. R. Plasmid incompatibility: more compatible than previously thought? Protein Eng Des Sel 20, 309-313, doi:10.1093/protein/gzm005 (2007).

Di Niro, R. et al. Construction of miniantibodies for the in vivo study of human autoimmune diseases in animal models. BMC Biotechnol 7, 46-55 (2007).

Ayriss, J., Woods, T., Bradbury, A. & Pavlik, P. High-throughput screening of single-chain antibodies using multiplexed flow cytometry. J Proteome Res 6, 1072-1082, doi:10.1021/pr0604108 (2007).

Kehoe, J. W. et al. Using phage display to select antibodies recognizing post-translational modifications independently of sequence context. Mol Cell Proteomics 5, 2350-2363, doi:10.1074/mcp.M600314-MCP200 (2006).

Chasteen, L., Ayriss, J., Pavlik, P. & Bradbury, A. R. Eliminating helper phage from phage display. Nucleic acids research 34, e145, doi:10.1093/nar/gkl772 (2006).

Di Niro, R. et al. Characterizing monoclonal antibody epitopes by filtered gene fragment phage display. The Biochemical journal 388, 889-894, doi:10.1042/BJ20041983 (2005).

Siegel, R. W., Velappan, N., Pavlik, P., Chasteen, L. & Bradbury, A. Recombinatorial cloning using heterologous lox sites. Genome Res 14, 1119-1129, doi:10.1101/gr.1821804 (2004).

Zacchi, P., Sblattero, D., Florian, F., Marzari, R. & Bradbury, A. Selecting open reading frames from DNA. Genome Research 13, 980-990, doi:10.1101/gr.861503 (2003).

Lou, J. et al. Antibodies in haystacks: how selection strategy influences the outcome of selection from molecular diversity libraries. Journal of immunological methods 253, 233-242, doi:10.1016/S0022-1759(01)00385-4 (2001).

Sblattero, D. & Bradbury, A. Exploiting recombination in single bacteria to make large phage antibody libraries. Nat Biotechnol 18, 75-80, doi:10.1038/71958 (2000).